Configure and launch an instance
After you configure your network settings on AWS, configure and launch the instances where you will install the database. An Elastic Compute Cloud (EC2) instance without an OpenText™ Analytics Database AMI is similar to a traditional host. Just like with an on-premises cluster, you must prepare and configure your cluster and network at the hardware level before you can install the database.
When you create an EC2 instance on AWS using an OpenText™ Analytics Database AMI, the instance includes the database software and the recommended configuration. OpenText recommends that you use the OpenText™ Analytics Database AMI unmodified. The OpenText™ Analytics Database AMI acts as a template, requiring fewer configuration steps:
-
Optionally, configure EBS volumes as a RAID array.
-
Launch instances and verify they are running.
OpenText provides database and Management Console AMIs on the Red Hat Enterprise Linux 8 operating system.
You can use the AMI to deploy MC hosts or cluster hosts. For more information, see the AWS Marketplace.
Configure EC2 instances in AWS
-
Select an OpenText™ Analytics Database AMI from the AWS marketplace.For instance type recommendations for Eon Mode databases, see Choosing AWS Eon Mode Instance Types.
-
Select the desired fulfillment method.
-
Configure the following:
-
Number of instances to launch. A database cluster usually uses identically configured instances of the same type.
-
VPC placement group
Add storage to instances
Consider the following issues when you add storage to your instances:
-
Add a number of drives equal to the number of physical cores in your instance—for example, for a c3.8xlarge instance, 16 drives; for an r3.4xlarge, 8 drives.
-
Do not store your information on the root volume.
-
Amazon EBS provides durable, block-level storage volumes that you can attach to running instances. For guidance on selecting and configuring an Amazon EBS volume type, see Amazon EBS Volume Types.
Configure EBS volumes as a RAID array
You can configure your EBS volumes into a RAID 0 array to improve disk performance. Before doing so, use the vioperf utility to determine whether the performance of the EBS volumes is fast enough without using them in a RAID array. Pass vioperf the path to a mount point for an EBS volume. In this example, an EBS volume is mounted on a directory named /vertica/data:
[dbadmin@ip-10-11-12-13 ~]$ /opt/vertica/bin/vioperf /vertica/data
The minimum required I/O is 20 MB/s read and write per physical processor core on
each node, in full duplex i.e. reading and writing at this rate simultaneously,
concurrently on all nodes of the cluster. The recommended I/O is 40 MB/s per
physical core on each node. For example, the I/O rate for a server node with 2
hyper-threaded six-core CPUs is 240 MB/s required minimum, 480 MB/s recommended.
Using direct io (buffer size=1048576, alignment=512) for directory "/vertica/data"
test | directory | counter name | counter | counter | counter | counter | thread | %CPU | %IO Wait | elapsed | remaining
| | | value | value (10 | value/core | value/core | count | | | time (s)| time (s)
| | | | sec avg) | | (10 sec avg) | | | | |
--------------------------------------------------------------------------------------------------------------------------------------------------------
Write | /vertica/data | MB/s | 259 | 259 | 32.375 | 32.375 | 8 | 4 | 11 | 10 | 65
Write | /vertica/data | MB/s | 248 | 232 | 31 | 29 | 8 | 4 | 11 | 20 | 55
Write | /vertica/data | MB/s | 240 | 234 | 30 | 29.25 | 8 | 4 | 11 | 30 | 45
Write | /vertica/data | MB/s | 240 | 233 | 30 | 29.125 | 8 | 4 | 13 | 40 | 35
Write | /vertica/data | MB/s | 240 | 233 | 30 | 29.125 | 8 | 4 | 13 | 50 | 25
Write | /vertica/data | MB/s | 240 | 232 | 30 | 29 | 8 | 4 | 12 | 60 | 15
Write | /vertica/data | MB/s | 240 | 238 | 30 | 29.75 | 8 | 4 | 12 | 70 | 5
Write | /vertica/data | MB/s | 240 | 235 | 30 | 29.375 | 8 | 4 | 12 | 75 | 0
ReWrite | /vertica/data | (MB-read+MB-write)/s| 237+237 | 237+237 | 29.625+29.625 | 29.625+29.625 | 8 | 4 | 22 | 10 | 65
ReWrite | /vertica/data | (MB-read+MB-write)/s| 235+235 | 234+234 | 29.375+29.375 | 29.25+29.25 | 8 | 4 | 20 | 20 | 55
ReWrite | /vertica/data | (MB-read+MB-write)/s| 234+234 | 235+235 | 29.25+29.25 | 29.375+29.375 | 8 | 4 | 20 | 30 | 45
ReWrite | /vertica/data | (MB-read+MB-write)/s| 233+233 | 234+234 | 29.125+29.125 | 29.25+29.25 | 8 | 4 | 18 | 40 | 35
ReWrite | /vertica/data | (MB-read+MB-write)/s| 233+233 | 234+234 | 29.125+29.125 | 29.25+29.25 | 8 | 4 | 20 | 50 | 25
ReWrite | /vertica/data | (MB-read+MB-write)/s| 234+234 | 235+235 | 29.25+29.25 | 29.375+29.375 | 8 | 3 | 19 | 60 | 15
ReWrite | /vertica/data | (MB-read+MB-write)/s| 233+233 | 236+236 | 29.125+29.125 | 29.5+29.5 | 8 | 4 | 21 | 70 | 5
ReWrite | /vertica/data | (MB-read+MB-write)/s| 232+232 | 236+236 | 29+29 | 29.5+29.5 | 8 | 4 | 21 | 75 | 0
Read | /vertica/data | MB/s | 248 | 248 | 31 | 31 | 8 | 4 | 12 | 10 | 65
Read | /vertica/data | MB/s | 241 | 236 | 30.125 | 29.5 | 8 | 4 | 15 | 20 | 55
Read | /vertica/data | MB/s | 240 | 232 | 30 | 29 | 8 | 4 | 10 | 30 | 45
Read | /vertica/data | MB/s | 240 | 232 | 30 | 29 | 8 | 4 | 12 | 40 | 35
Read | /vertica/data | MB/s | 240 | 234 | 30 | 29.25 | 8 | 4 | 12 | 50 | 25
Read | /vertica/data | MB/s | 238 | 235 | 29.75 | 29.375 | 8 | 4 | 15 | 60 | 15
Read | /vertica/data | MB/s | 238 | 232 | 29.75 | 29 | 8 | 4 | 13 | 70 | 5
Read | /vertica/data | MB/s | 238 | 238 | 29.75 | 29.75 | 8 | 3 | 9 | 75 | 0
SkipRead | /vertica/data | seeks/s | 22909 | 22909 | 2863.62 | 2863.62 | 8 | 0 | 6 | 10 | 65
SkipRead | /vertica/data | seeks/s | 21989 | 21068 | 2748.62 | 2633.5 | 8 | 0 | 6 | 20 | 55
SkipRead | /vertica/data | seeks/s | 21639 | 20936 | 2704.88 | 2617 | 8 | 0 | 7 | 30 | 45
SkipRead | /vertica/data | seeks/s | 21478 | 20999 | 2684.75 | 2624.88 | 8 | 0 | 6 | 40 | 35
SkipRead | /vertica/data | seeks/s | 21381 | 20995 | 2672.62 | 2624.38 | 8 | 0 | 5 | 50 | 25
SkipRead | /vertica/data | seeks/s | 21310 | 20953 | 2663.75 | 2619.12 | 8 | 0 | 5 | 60 | 15
SkipRead | /vertica/data | seeks/s | 21280 | 21103 | 2660 | 2637.88 | 8 | 0 | 8 | 70 | 5
SkipRead | /vertica/data | seeks/s | 21272 | 21142 | 2659 | 2642.75 | 8 | 0 | 6 | 75 | 0
If the EBS volume read and write performance (the entries with Read and Write in column 1 of the output) is greater than 20MB/s per physical processor core (columns 6 and 7), you do not need to configure the EBS volumes as a RAID array to meet the minimum requirements to run the database. You may still consider configuring your EBS volumes as a RAID array if the performance is less than the optimal 40MB/s per physical core (as is the case in this example).
Note
If your EC2 instance has hyper-threading enabled, vioperf may incorrectly count the number of cores in your system. The 20MB/s throughput per core requirement only applies to physical cores, rather than virtual cores. If your EC2 instance has hyper-threading enabled, divide the counter value (column 4 in the output) by the number of physical cores. See CPU Cores and Threads Per CPU Core Per Instance Type section in the AWS documentation topic Optimizing CPU Options for a list of physical cores in each instance type.If you determine you need to configure your EBS volumes as a RAID 0 array, see the AWS documentation topic RAID Configuration on Linux the steps you need to take.
Security group and access
-
Choose between your previously configured security group or the default security group.
-
Configure S3 access for your nodes by creating and assigning an IAM role to your EC2 instance. See AWS authentication for more information.