SVD (singular value decomposition)

Singular Value Decomposition (SVD) is a matrix decomposition method that allows you to approximate matrix X with dimensions n-by-p as a product of 3 matrices: X(n-by-p) = U(n-by-k).S(k-byk).VT(k-by-p) where k is an integer from 1 to p, and S is a diagonal matrix.

Singular Value Decomposition (SVD) is a matrix decomposition method that allows you to approximate matrix X with dimensions n-by-p as a product of 3 matrices: X(n-by-p) = U(n-by-k).S(k-byk).VT(k-by-p) where k is an integer from 1 to p, and S is a diagonal matrix. Its diagonal has non-negative values, called singular values, sorted from the largest, at the top left, to the smallest, at the bottom right. All other elements of S are zero.

In practice, the matrix V(p-by-k), which is the transposed version of VT, is more preferred.

If k (an input parameter to the decomposition algorithm, also known as the number of components to keep in the output) is equal to p, the decomposition is exact. If k is less than p, the decomposition becomes an approximation.

An application of SVD is lossy data compression. For example, storing X required n.p elements, while storing the three matrices U, S, and VT requires storing n.k + k + k.p elements. If n=1000, p=10, and k=2, storing X would require 10,000 elements while storing the approximation would require 2,000+4+20 = 2,024 elements. A smaller value of k increases the savings in storage space, while a larger value of k gives a more accurate approximation.

Depending on your data, the singular values may decrease rapidly, which allows you to choose a value of k that is much smaller than the value of p.

Another common application of SVD is to perform the principal component analysis.

You can use the following functions to train and apply the SVD model:

For a complete example, see Computing SVD.

In this section