PREDICT_LINEAR_REG
Applies a linear regression model on an input relation and returns the predicted value as a FLOAT.
	Applies a linear regression model on an input relation and returns the predicted value as a FLOAT.
Syntax
PREDICT_LINEAR_REG ( input-columns
        USING PARAMETERS model_name = 'model-name' [, match_by_pos = match-by-position] )
Arguments
- input-columns
- Comma-separated list of columns to use from the input relation, or asterisk (*) to select all columns.
Parameters
- model_name
- Name of the model (case-insensitive). 
- match_by_pos
- Boolean value that specifies how input columns are matched to model features: - 
true: Match by the position of columns in the input columns list.
- 
false(default): Match by name.
 
- 
Examples
=> SELECT PREDICT_LINEAR_REG(waiting USING PARAMETERS model_name='myLinearRegModel')FROM
faithful ORDER BY id;
 PREDICT_LINEAR_REG
--------------------
   4.15403481386324
   2.18505296804024
   3.76023844469864
    2.8151271587036
   4.62659045686076
   2.26381224187316
   4.86286827835952
   4.62659045686076
   1.94877514654148
   4.62659045686076
   2.18505296804024
...
 (272 rows)
The following example shows how to use the PREDICT_LINEAR_REG function on an input table, using the match_by_pos parameter. Note that you can replace the column argument with a constant that does not match an input column:
=> SELECT PREDICT_LINEAR_REG(55 USING PARAMETERS model_name='linear_reg_faithful',
                     match_by_pos='true')FROM faithful ORDER BY id;
 PREDICT_LINEAR_REG
--------------------
2.28552115094171
2.28552115094171
2.28552115094171
2.28552115094171
2.28552115094171
2.28552115094171
2.28552115094171
...
 (272 rows)