Computing SVD

This SVD example uses a small data set named small_svd.

This SVD example uses a small data set named small_svd. The example shows you how to compute SVD using the given data set. The table is a matrix of numbers. The singular value decomposition is computed using the SVD function. This example computes the SVD of the table matrix and assigns it to a new object, which contains one vector, and two matrices, U and V. The vector contains the singular values. The first matrix, U contains the left singular vectors and V contains the right singular vectors.

Before you begin the example, load the Machine Learning sample data.
  1. Create the SVD model, named svdmodel.

    => SELECT SVD ('svdmodel', 'small_svd', 'x1,x2,x3,x4');
    SVD
    --------------------------------------------------------------
    Finished in 1 iterations.
    Accepted Rows: 8  Rejected Rows: 0
    (1 row)
    
  2. View the summary output of svdmodel.

    
    => SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='svdmodel');
    GET_MODEL_SUMMARY
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------------------------
    ---------------------------------------------------------------------------------------
    =======
    columns
    =======
    index|name
    -----+----
    1    | x1
    2    | x2
    3    | x3
    4    | x4
    ===============
    singular_values
    ===============
    index| value  |explained_variance|accumulated_explained_variance
    -----+--------+------------------+------------------------------
    1    |22.58748|      0.95542     |            0.95542
    2    | 3.79176|      0.02692     |            0.98234
    3    | 2.55864|      0.01226     |            0.99460
    4    | 1.69756|      0.00540     |            1.00000
    ======================
    right_singular_vectors
    ======================
    index|vector1 |vector2 |vector3 |vector4
    -----+--------+--------+--------+--------
    1    | 0.58736| 0.08033| 0.74288|-0.31094
    2    | 0.26661| 0.78275|-0.06148| 0.55896
    3    | 0.71779|-0.13672|-0.64563|-0.22193
    4    | 0.26211|-0.60179| 0.16587| 0.73596
    ========
    counters
    ========
    counter_name      |counter_value
    ------------------+-------------
    accepted_row_count|      8
    rejected_row_count|      0
    iteration_count   |      1
    ===========
    call_string
    ===========
    SELECT SVD('public.svdmodel', 'small_svd', 'x1,x2,x3,x4');
    (1 row)
    
  3. Create a new table, named Umat to obtain the values for U.

    => CREATE TABLE Umat AS SELECT APPLY_SVD(id, x1, x2, x3, x4 USING PARAMETERS model_name='svdmodel',
    exclude_columns='id', key_columns='id') OVER() FROM small_svd;
    CREATE TABLE
    
  4. View the results in the Umat table. This table transforms the matrix into a new coordinates system.

    => SELECT * FROM Umat ORDER BY id;
      id |        col1        |        col2        |        col3         |        col4
    -----+--------------------+--------------------+---------------------+--------------------
    1    | -0.494871802886819 | -0.161721379259287 |  0.0712816417153664 | -0.473145877877408
    2    |  -0.17652411036246 | 0.0753183783382909 |  -0.678196192333598 | 0.0567124770173372
    3    | -0.150974762654569 | -0.589561842046029 | 0.00392654610109522 |  0.360011163271921
    4    |  -0.44849499240202 |  0.347260956311326 |   0.186958376368345 |  0.378561270493651
    5    | -0.494871802886819 | -0.161721379259287 |  0.0712816417153664 | -0.473145877877408
    6    |  -0.17652411036246 | 0.0753183783382909 |  -0.678196192333598 | 0.0567124770173372
    7    | -0.150974762654569 | -0.589561842046029 | 0.00392654610109522 |  0.360011163271921
    8    |  -0.44849499240202 |  0.347260956311326 |   0.186958376368345 |  0.378561270493651
    (8 rows)
    
  5. Then, we can optionally transform the data back by converting it from Umat to Xmat. First, we must create the Xmat table and then apply the APPLY_INVERSE_SVD function to the table:

    => CREATE TABLE Xmat AS SELECT APPLY_INVERSE_SVD(* USING PARAMETERS model_name='svdmodel',
    exclude_columns='id', key_columns='id') OVER() FROM Umat;
    CREATE TABLE
    
  6. Then view the data from the Xmat table that was created:

    => SELECT id, x1::NUMERIC(5,1), x2::NUMERIC(5,1), x3::NUMERIC(5,1), x4::NUMERIC(5,1) FROM Xmat
    ORDER BY id;
    id | x1  | x2  | x3  | x4
    ---+-----+-----+-----+-----
    1  | 7.0 | 3.0 | 8.0 | 2.0
    2  | 1.0 | 1.0 | 4.0 | 1.0
    3  | 2.0 | 3.0 | 2.0 | 0.0
    4  | 6.0 | 2.0 | 7.0 | 4.0
    5  | 7.0 | 3.0 | 8.0 | 2.0
    6  | 1.0 | 1.0 | 4.0 | 1.0
    7  | 2.0 | 3.0 | 2.0 | 0.0
    8  | 6.0 | 2.0 | 7.0 | 4.0
    (8 rows)
    

See also