Computing SVD
This SVD example uses a small data set named small_svd. The example shows you how to compute SVD using the given data set. The table is a matrix of numbers. The singular value decomposition is computed using the SVD function. This example computes the SVD of the table matrix and assigns it to a new object, which contains one vector, and two matrices, U and V. The vector contains the singular values. The first matrix, U contains the left singular vectors and V contains the right singular vectors.
Before you begin the example, load the Machine Learning sample data.-
Create the SVD model, named
svdmodel
.=> SELECT SVD ('svdmodel', 'small_svd', 'x1,x2,x3,x4'); SVD -------------------------------------------------------------- Finished in 1 iterations. Accepted Rows: 8 Rejected Rows: 0 (1 row)
-
View the summary output of
svdmodel
.=> SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='svdmodel'); GET_MODEL_SUMMARY ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------- ======= columns ======= index|name -----+---- 1 | x1 2 | x2 3 | x3 4 | x4 =============== singular_values =============== index| value |explained_variance|accumulated_explained_variance -----+--------+------------------+------------------------------ 1 |22.58748| 0.95542 | 0.95542 2 | 3.79176| 0.02692 | 0.98234 3 | 2.55864| 0.01226 | 0.99460 4 | 1.69756| 0.00540 | 1.00000 ====================== right_singular_vectors ====================== index|vector1 |vector2 |vector3 |vector4 -----+--------+--------+--------+-------- 1 | 0.58736| 0.08033| 0.74288|-0.31094 2 | 0.26661| 0.78275|-0.06148| 0.55896 3 | 0.71779|-0.13672|-0.64563|-0.22193 4 | 0.26211|-0.60179| 0.16587| 0.73596 ======== counters ======== counter_name |counter_value ------------------+------------- accepted_row_count| 8 rejected_row_count| 0 iteration_count | 1 =========== call_string =========== SELECT SVD('public.svdmodel', 'small_svd', 'x1,x2,x3,x4'); (1 row)
-
Create a new table, named
Umat
to obtain the values for U.=> CREATE TABLE Umat AS SELECT APPLY_SVD(id, x1, x2, x3, x4 USING PARAMETERS model_name='svdmodel', exclude_columns='id', key_columns='id') OVER() FROM small_svd; CREATE TABLE
-
View the results in the
Umat
table. This table transforms the matrix into a new coordinates system.=> SELECT * FROM Umat ORDER BY id; id | col1 | col2 | col3 | col4 -----+--------------------+--------------------+---------------------+-------------------- 1 | -0.494871802886819 | -0.161721379259287 | 0.0712816417153664 | -0.473145877877408 2 | -0.17652411036246 | 0.0753183783382909 | -0.678196192333598 | 0.0567124770173372 3 | -0.150974762654569 | -0.589561842046029 | 0.00392654610109522 | 0.360011163271921 4 | -0.44849499240202 | 0.347260956311326 | 0.186958376368345 | 0.378561270493651 5 | -0.494871802886819 | -0.161721379259287 | 0.0712816417153664 | -0.473145877877408 6 | -0.17652411036246 | 0.0753183783382909 | -0.678196192333598 | 0.0567124770173372 7 | -0.150974762654569 | -0.589561842046029 | 0.00392654610109522 | 0.360011163271921 8 | -0.44849499240202 | 0.347260956311326 | 0.186958376368345 | 0.378561270493651 (8 rows)
-
Then, we can optionally transform the data back by converting it from Umat to Xmat. First, we must create the Xmat table and then apply the APPLY_INVERSE_SVD function to the table:
=> CREATE TABLE Xmat AS SELECT APPLY_INVERSE_SVD(* USING PARAMETERS model_name='svdmodel', exclude_columns='id', key_columns='id') OVER() FROM Umat; CREATE TABLE
-
Then view the data from the Xmat table that was created:
=> SELECT id, x1::NUMERIC(5,1), x2::NUMERIC(5,1), x3::NUMERIC(5,1), x4::NUMERIC(5,1) FROM Xmat ORDER BY id; id | x1 | x2 | x3 | x4 ---+-----+-----+-----+----- 1 | 7.0 | 3.0 | 8.0 | 2.0 2 | 1.0 | 1.0 | 4.0 | 1.0 3 | 2.0 | 3.0 | 2.0 | 0.0 4 | 6.0 | 2.0 | 7.0 | 4.0 5 | 7.0 | 3.0 | 8.0 | 2.0 6 | 1.0 | 1.0 | 4.0 | 1.0 7 | 2.0 | 3.0 | 2.0 | 0.0 8 | 6.0 | 2.0 | 7.0 | 4.0 (8 rows)