This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Model management

Vertica provides several functions for managing models.

Vertica provides several functions for managing models.

1 - CHANGE_MODEL_STATUS

Changes the status of a registered model.

Changes the status of a registered model. Only dbadmin and users with the MLSUPERVISOR role can call this function.

The following diagram depicts the valid status transitions:

This is a meta-function. You must call meta-functions in a top-level SELECT statement.

Behavior type

Stable

Syntax

CHANGE_MODEL_STATUS( 'registered_name', registered_version, 'new_status' )

Arguments

registered_name
Identifies the abstract name to which the model is registered. This registered_name can represent a group of models for a higher-level application, where each model in the group has a unique version number.
registered_version
Unique version number of the model under the specified registered_name.

If there is no registered model with the given registered_name and registered_version, the function errors.

new_status
New status of the registered model. Must be one of the following strings and adhere to the valid status transitions depicted in the above diagram:
  • under_review: Status assigned to newly registered models.

  • staging: Model is targeted for A/B testing against the model currently in production.

  • production: Model is in production for its specified application. Only one model can be in production for a given registered_name at one time.

  • archived: Status of models that were previously in production. Archived models can be returned to production at any time.

  • declined: Model is no longer in consideration for production.

  • unregistered: Model is removed from the versioning environment. The model does not appear in the REGISTERED_MODELS system table.

If you change the status of a model to 'production' and there is already a model in production under the given registered_name, the status of the model in production is set to 'archived' and the status of the new model is set to 'production'.

Privileges

One of the following:

Examples

In the following example, the linear_reg_spark1 model, which is uniquely identified by the registered_name 'linear_reg_app' and the registered_version of two, is set to 'production' status:

=> SELECT * FROM REGISTERED_MODELS;
  registered_name | registered_version |    status    |        registered_time        |      model_id     | schema_name |    model_name     |      model_type       |    category
------------------+--------------------+--------------+-------------------------------+-------------------+-------------+-------------------+-----------------------+----------------
 linear_reg_app   |                  2 | STAGING      | 2023-01-29 05:49:00.082166-04 | 45035996273714020 | public      | linear_reg_spark1 | PMML_REGRESSION_MODEL | PMML
 linear_reg_app   |                  1 | PRODUCTION   | 2023-01-24 09:19:04.553102-05 | 45035996273850350 | public      | native_linear_reg | LINEAR_REGRESSION     | VERTICA_MODELS
 logistic_reg_app |                  1 | DECLINED     | 2023-01-11 02:47:25.990626-02 | 45035996273853740 | public      | log_reg_bfgs      | LOGISTIC_REGRESSION   | VERTICA_MODELS
(3 rows)

=> SELECT CHANGE_MODEL_STATUS('linear_reg_app', 2, 'production');
                          CHANGE_MODEL_STATUS
-----------------------------------------------------------------------------
The status of model [linear_reg_app] - version [2] is changed to [production]
(1 row)

You can query the REGISTERED_MODELS system table to confirm that the linear_reg_spark1 model is now in 'production' and the native_linear_reg model, which was currently in 'production', is moved to 'archived':

=> SELECT * FROM REGISTERED_MODELS;
  registered_name | registered_version |    status    |        registered_time        |      model_id     | schema_name |    model_name     |      model_type       |    category
------------------+--------------------+--------------+-------------------------------+-------------------+-------------+-------------------+-----------------------+----------------
 linear_reg_app   |                  2 | PRODUCTION   | 2023-01-29 05:49:00.082166-04 | 45035996273714020 | public      | linear_reg_spark1 | PMML_REGRESSION_MODEL | PMML
 linear_reg_app   |                  1 | ARCHIVED     | 2023-01-24 09:19:04.553102-05 | 45035996273850350 | public      | native_linear_reg | LINEAR_REGRESSION     | VERTICA_MODELS
 logistic_reg_app |                  1 | DECLINED     | 2023-01-11 02:47:25.990626-02 | 45035996273853740 | public      | log_reg_bfgs      | LOGISTIC_REGRESSION   | VERTICA_MODELS
(2 rows)

If you change a model's status to 'unregistered', the model is removed from the model versioning environment and no longer appears in the REGISTERED_MODELS system table:

=> SELECT CHANGE_MODEL_STATUS('logistic_reg_app', 1, 'unregistered');
                            CHANGE_MODEL_STATUS
----------------------------------------------------------------------------------
The status of model [logistic_reg_app] - version [1] is changed to [unregistered]
(1 row)

=> SELECT * FROM REGISTERED_MODELS;
  registered_name | registered_version |    status    |        registered_time        |      model_id     | schema_name |    model_name     |      model_type       |    category
------------------+--------------------+--------------+-------------------------------+-------------------+-------------+-------------------+-----------------------+----------------
 linear_reg_app   |                  2 | STAGING      | 2023-01-29 05:49:00.082166-04 | 45035996273714020 | public      | linear_reg_spark1 | PMML_REGRESSION_MODEL | PMML
 linear_reg_app   |                  1 | PRODUCTION   | 2023-01-24 09:19:04.553102-05 | 45035996273850350 | public      | native_linear_reg | LINEAR_REGRESSION     | VERTICA_MODELS
(2 rows)

See also

2 - EXPORT_MODELS

Exports machine learning models.

Exports machine learning models. Vertica supports three model formats:

  • Native Vertica (VERTICA_MODELS)

  • PMML

  • TensorFlow

This is a meta-function. You must call meta-functions in a top-level SELECT statement.

Behavior type

Volatile

Syntax

EXPORT_MODELS ( 'output-dir', 'export-target' [ USING PARAMETERS category = 'model-category' ] )

Arguments

output-dir
Absolute path of an output directory to store the exported models.
export-target
Specifies which models to export as follows:
 [schema.]{ model-name | * }

where schema optionally specifies to export models from the specified schema. If omitted, EXPORT_MODELS uses the default schema. Supply * (asterisk) to export all models from the schema.

Parameters

category
The category of models to export, one of the following:
  • VERTICA_MODELS

  • PMML

  • TENSORFLOW

EXPORT_MODELS exports models of the specified category according to the scope of the export operation—that is, whether it applies to a single model, or to all models within a schema. See Export Scope and Category Processing below.

Exported Files below describes the files that EXPORT_MODELS exports for each category.

If you omit this parameter, EXPORT_MODELS exports the model, or models in the specified schema, according to their model type.

Privileges

Superuser

Export scope and category processing

EXPORT_MODELS executes according to the following parameter settings:

  • Scope of the export operation: single model, or all models within a given schema

  • Category specified or omitted

The following table shows how these two parameters control the export process:

Export scope If category specified... If category omitted...
Single model Convert the model to the specified category, provided the model and category are compatible; otherwise, return with a mismatch error. Export the model according to model type.
All models in schema Export only models that are compatible with the specified category and issue mismatch warnings on all other models in the schema. Export all models in the schema according to model type.

Exported files

EXPORT_MODELS exports the following files for each model category:

Model category Exported files
VERTICA_MODELS
  • Multiple binary files (exact number dependent on model type)

  • metadata.json: Metadata file with model information —model name, category, type, Vertica version on export.

  • crc.json: Used on import to validate other files of this model.

PMML
  • XML file with the same name as the model and complying with PMML standard.

  • metadata.json: Metadata file with model information —model name, category, type, Vertica version on export.

  • crc.json: Used on import to validate other files of this model.

TENSORFLOW
  • model-name.pb: Contains the TensorFlow model, saved in 'frozen graph' format.

  • metadata.json: Metadata file with model information —model name, category, type, Vertica version on export.

  • tf_model_desc.json: Summary model description.

  • model.json: Verbose model description.

  • crc.json: Used on import to validate other files of this model.

Categories and compatible models

If EXPORT_MODELS specifies a single model and also sets the category parameter, the function succeeds if the model type and category are compatible; otherwise, it returns with an error:

Model type Compatible categories
PMML PMML
TensorFlow TENSORFLOW
VERTICA_MODELS PMML VERTICA_MODELS

If EXPORT_MODELS specifies to export all models from a schema and sets a category, it issues a warning message on each model that is incompatible with that category. The function then continues to process remaining models in that schema.

EXPORT_MODELS logs all errors and warnings in output-dir/export_log.json.

Examples

Export models without changing their category:

  • Export model myschema.mykmeansmodel without changing its category:

    => SELECT EXPORT_MODELS ('/home/dbadmin', 'myschema.mykmeansmodel');
    EXPORT_MODELS
    ----------------
    Success
    (1 row)
    
  • Export all models in schema myschema without changing their categories:

    => SELECT EXPORT_MODELS ('/home/dbadmin', 'myschema.*');
    EXPORT_MODELS
    ----------------
    Success
    (1 row)
    

Export models that are compatible with the specified category:

  • The category is set to PMML. Models of type PMML and VERTICA_MODELS are compatible with the PMML category, so the export operation succeeds if my_keans is of either type:

    => SELECT EXPORT_MODELS ('/tmp/', 'my_kmeans' USING PARAMETERS category='PMML');
    
  • The category is set to VERTICA_MODELS. Only models of type VERTICA_MODELS are compatible with the VERTICA_MODELS category, so the export operation succeeds only if my_keans is of that type:

    => SELECT EXPORT_MODELS ('/tmp/', 'public.my_kmeans' USING PARAMETERS category='VERTICA_MODELS');
    
  • The category is set to TENSORFLOW. Only models of type TensorFlow are compatible with the TENSORFLOW category, so the model tf_mnist_keras must be of type TensorFlow:

    => SELECT EXPORT_MODELS ('/tmp/', 'tf_mnist_keras', USING PARAMETERS category='TENSORFLOW');
    export_models
    ---------------
    Success
    (1 row)
    

After exporting the TensorFlow model tf_mnist_keras, list the exported files:

$ ls tf_mnist_keras/
crc.json  metadata.json  mnist_keras.pb  model.json  tf_model_desc.json

See also

IMPORT_MODELS

3 - GET_MODEL_ATTRIBUTE

Extracts either a specific attribute from a model or all attributes from a model.

Extracts either a specific attribute from a model or all attributes from a model. Use this function to view a list of attributes and row counts or view detailed information about a single attribute. The output of GET_MODEL_ATTRIBUTE is a table format where users can select particular columns or rows.

Syntax

GET_MODEL_ATTRIBUTE ( USING PARAMETERS model_name = 'model-name' [, attr_name = 'attribute' ] )

Parameters

model_name

Name of the model (case-insensitive).

attr_name
Name of the model attribute to extract. If omitted, the function shows all available attributes. Attribute names are case-sensitive.

Privileges

Non-superusers: model owner, or USAGE privileges on the model

Examples

This example returns a summary of all model attributes.

=> SELECT GET_MODEL_ATTRIBUTE ( USING PARAMETERS model_name='myLinearRegModel');
attr_name          |                attr_fields                        | #_of_rows
-------------------+---------------------------------------------------+-----------
details            | predictor, coefficient, std_err, t_value, p_value |         2
regularization     | type, lambda                                      |         1
iteration_count    | iteration_count                                   |         1
rejected_row_count | rejected_row_count                                |         1
accepted_row_count | accepted_row_count                                |         1
call_string        | call_string                                       |         1
(6 rows)

This example extracts the details attribute from the myLinearRegModel model.

=> SELECT GET_MODEL_ATTRIBUTE ( USING PARAMETERS model_name='myLinearRegModel', attr_name='details');
coeffNames |       coeff        |       stdErr        |      zValue       |        pValue
-----------+--------------------+---------------------+-------------------+-----------------------
Intercept  |  -1.87401598641074 |   0.160143331525544 | -11.7021169008952 |   7.3592939615234e-26
waiting    | 0.0756279479518627 | 0.00221854185633525 |  34.0890336307608 | 8.13028381124448e-100
(2 rows)

4 - GET_MODEL_SUMMARY

Returns summary information of a model.

Returns summary information of a model.

Syntax

GET_MODEL_SUMMARY ( USING PARAMETERS model_name = 'model-name' )

Parameters

model_name

Name of the model (case-insensitive).

Privileges

Non-superusers: model owner, or USAGE privileges on the model

Examples

This example shows how you can view the summary of a linear regression model.

=> SELECT GET_MODEL_SUMMARY( USING PARAMETERS model_name='myLinearRegModel');

--------------------------------------------------------------------------------
=======
details
=======
predictor|coefficient|std_err |t_value |p_value
---------+-----------+--------+--------+--------
Intercept| -2.06795  | 0.21063|-9.81782| 0.00000
waiting  |  0.07876  | 0.00292|26.96925| 0.00000

==============
regularization
==============
type| lambda
----+--------
none| 1.00000

===========
call_string
===========
linear_reg('public.linear_reg_faithful', 'faithful_training', '"eruptions"', 'waiting'
USING PARAMETERS optimizer='bfgs', epsilon=1e-06, max_iterations=100,
regularization='none', lambda=1)

===============
Additional Info
===============
Name              |Value
------------------+-----
iteration_count   |  3
rejected_row_count|  0
accepted_row_count| 162
(1 row)

5 - IMPORT_MODELS

Imports models into Vertica, either Vertica models that were exported with EXPORT_MODELS, or models in Predictive Model Markup Language (PMML) or TensorFlow format.

Imports models into Vertica, either Vertica models that were exported with EXPORT_MODELS, or models in Predictive Model Markup Language (PMML) or TensorFlow format. You can use this function to move models between Vertica clusters, or to import PMML and TensorFlow models trained elsewhere.

Other Vertica model management operations such as GET_MODEL_SUMMARY and GET_MODEL_ATTRIBUTE support imported models.

This is a meta-function. You must call meta-functions in a top-level SELECT statement.

Behavior type

Volatile

Syntax

IMPORT_MODELS ( 'source'
           [ USING PARAMETERS [ new_schema = 'schema-name' ] [, category = 'model-category' ] ] )

Arguments

source
The absolute path of the location from which to import models, one of the following:
  • The directory of a single model:

    path/model-directory
    
  • The parent directory of multiple model directories:

    parent-dir-path/*
    

Parameters

new_schema
An existing schema where the machine learning models are imported. If omitted, models are imported to the default schema.

IMPORT_MODELS extracts the name of the imported model from its metadata.json file, if it exists. Otherwise, the function uses the name of the model directory.

category
Specifies the category of the model to import, one of the following:
  • VERTICA_MODELS

  • PMML

  • TENSORFLOW

This parameter is required if the model directory has no metadata.json file. IMPORT_MODELS returns with an error if one of the following cases is true:

  • No category is specified and the model directory has no metadata.json.

  • The specified category does not match the model type.

Privileges

Superuser

Requirements and restrictions

The following requirements and restrictions apply:

  • If you export a model, then import it again, the export and import model directory names must match. If naming conflicts occur, import the model to a different schema by using the new_schema parameter, and then rename the model.

  • The machine learning configuration parameter MaxModelSizeKB sets the maximum size of a model that can be imported into Vertica.

  • Some PMML features and attributes are not currently supported. See PMML features and attributes for details.

  • If you import a PMML model with both metadata.json and crc.json files, the CRC file must contain the metadata file's CRC value. Otherwise, the import operation returns with an error.

Examples

Import models into the specified schema:

In both examples no model category is specified, so IMPORT_MODEL uses the model's metadata.json file to determine its category:

  • Import a single model mykmeansmodel into the newschema schema:

    => SELECT IMPORT_MODELS ('/home/dbadmin/myschema/mykmeansmodel' USING PARAMETERS new_schema='newschema')
    IMPORT_MODELS
    ----------------
    Success
    (1 row)
    
  • Import all models in the myschema directory into the newschema schema:

    => SELECT IMPORT_MODELS ('/home/dbadmin/myschema/*' USING PARAMETERS new_schema='newschema')
    IMPORT_MODELS
    ----------------
    Success
    (1 row)
    

Specify the category of models to import:

In the first two examples, IMPORT_MODELS returns with success only if the specified model and category match; otherwise, it returns an error:

  • Import kmeans_pmml as a PMML model:

    SELECT IMPORT_MODELS ('/root/user/kmeans_pmml' USING PARAMETERS category='PMML')
     import_models
    ---------------
     Success
    (1 row)
    
  • Import tf_mnist_estimator as a TensorFlow model:

    => SELECT IMPORT_MODELS ( '/path/tf_models/tf_mnist_estimator' USING PARAMETERS category='TENSORFLOW');
     import_models
    ---------------
     Success
    (1 row)
    
  • Import all TensorFlow models from the specified directory:

    => SELECT IMPORT_MODELS ( '/path/tf_models/*' USING PARAMETERS category='TENSORFLOW');
     import_models
    ---------------
     Success
    (1 row)
    

See also

EXPORT_MODELS

6 - REGISTER_MODEL

Registers a trained model and adds it to Model Versioning environment with a status of 'under_review'.

Registers a trained model and adds it to Model versioning environment with a status of 'under_review'. The model must be registered by the owner of the model, dbadmin, or MLSUPERVISOR.

After a model is registered, the model owner is automatically changed to Superuser and the previous owner is given USAGE privileges. Users with the MLSUPERVISOR role or dbamin can call the CHANGE_MODEL_STATUS function to alter the status of registered models.

This is a meta-function. You must call meta-functions in a top-level SELECT statement.

Behavior type

Stable

Syntax

REGISTER_MODEL( 'model_name', 'registered_name' )

Arguments

model_name
Identifies the model to register. If the model has already been registered, the function throws an error.
registered_name
Identifies an abstract name to which the model is registered. This registered_name can represent a group of models for a higher-level application, where each model in the group has a unique version number.

If a model is the first to be registered to a given registered_name, the model is assigned a registered_version of one. Otherwise, newly registered models are assigned an incremented registered_version of n + 1, where n is the number of models already registered to the given registered_name. Each registered model can be uniquely identified by the combination of registered_name and registered_version.

Privileges

Non-superusers: model owner

Examples

In the following example, the model log_reg_bfgs is registered to the logistic_reg_app application:

=> SELECT REGISTER_MODEL('log_reg_bfgs', 'logistic_reg_app');
                          REGISTER_MODEL
----------------------------------------------------------------------
Model [log_reg_bfgs] is registered as [logistic_reg_app], version [1]
(1 row)

You can query the REGISTERED_MODELS system table to view details about the newly registered model:

=> SELECT * FROM REGISTERED_MODELS;
  registered_name | registered_version |    status    |        registered_time        |      model_id     | schema_name |    model_name     |      model_type       |    category
------------------+--------------------+--------------+-------------------------------+-------------------+-------------+-------------------+-----------------------+----------------
 logistic_reg_app |                  1 | UNDER_REVIEW | 2023-01-22 09:49:25.990626-02 | 45035996273853740 | public      | log_reg_bfgs      | LOGISTIC_REGRESSION   | VERTICA_MODELS
(1 row)

See also

7 - UPGRADE_MODEL

Upgrades a model from a previous Vertica version.

Upgrades a model from a previous Vertica version. Vertica automatically runs this function during a database upgrade and if you run the IMPORT_MODELS function. Manually call this function to upgrade models after a backup or restore.

If UPGRADE_MODEL fails to upgrade the model and the model is of category VERTICA_MODELS, it cannot be used for in-database scoring and cannot be exported as a PMML model.

This is a meta-function. You must call meta-functions in a top-level SELECT statement.

Behavior type

Volatile

Syntax

UPGRADE_MODEL ( [ USING PARAMETERS [model_name = 'model-name'] ] )

Parameters

model_name
Name of the model to upgrade. If you omit this parameter, Vertica upgrades all models on which you have privileges.

Privileges

Non-superuser: Upgrades only models that the user owns.

Examples

Upgrade model myLogisticRegModel:

=> SELECT UPGRADE_MODEL( USING PARAMETERS model_name = 'myLogisticRegModel');
        UPGRADE_MODEL
----------------------------
 1 model(s) upgrade

(1 row)

Upgrade all models that the user owns:

=> SELECT UPGRADE_MODEL();
        UPGRADE_MODEL
----------------------------
 20 model(s) upgrade

(1 row)