Building a random forest regression model
This example uses the "mtcars" dataset to create a random forest model to predict the value of carb (the number of carburetors).
This example uses the "mtcars" dataset to create a random forest model to predict the value of carb
(the number of carburetors).
-
Use
RF_REGRESSOR
to create the random forest modelmyRFRegressorModel
using themtcars
training data. View the summary output of the model withGET_MODEL_SUMMARY
:=> SELECT RF_REGRESSOR ('myRFRegressorModel', 'mtcars', 'carb', 'mpg, cyl, hp, drat, wt' USING PARAMETERS ntree=100, sampling_size=0.3); RF_REGRESSOR -------------- Finished (1 row) => SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='myRFRegressorModel'); -------------------------------------------------------------------------------- =========== call_string =========== SELECT rf_regressor('public.myRFRegressorModel', 'mtcars', '"carb"', 'mpg, cyl, hp, drat, wt' USING PARAMETERS exclude_columns='', ntree=100, mtry=1, sampling_size=0.3, max_depth=5, max_breadth=32, min_leaf_size=5, min_info_gain=0, nbins=32); ======= details ======= predictor|type ---------+----- mpg |float cyl | int hp | int drat |float wt |float =============== Additional Info =============== Name |Value ------------------+----- tree_count | 100 rejected_row_count| 0 accepted_row_count| 32 (1 row)
-
Use
PREDICT_RF_REGRESSOR
to predict the number of carburetors:=> SELECT PREDICT_RF_REGRESSOR (mpg,cyl,hp,drat,wt USING PARAMETERS model_name='myRFRegressorModel') FROM mtcars; PREDICT_RF_REGRESSOR ---------------------- 2.94774203574204 2.6954087024087 2.6954087024087 2.89906346431346 2.97688489288489 2.97688489288489 2.7086587024087 2.92078965478965 2.97688489288489 2.7086587024087 2.95621822621823 2.82255155955156 2.7086587024087 2.7086587024087 2.85650394050394 2.85650394050394 2.97688489288489 2.95621822621823 2.6954087024087 2.6954087024087 2.84493251193251 2.97688489288489 2.97688489288489 2.8856467976468 2.6954087024087 2.92078965478965 2.97688489288489 2.97688489288489 2.7934087024087 2.7934087024087 2.7086587024087 2.72469441669442 (32 rows)