MERGE source options
A MERGE
operation joins the target table to one of the following data sources:
-
Another table
-
View
-
Subquery result set
Merging from table and view data
You merge data from one table into another as follows:
MERGE INTO target-table USING { source-table | source-view } join-condition
matching-clause[ matching-clause ]
If you specify a view, Vertica expands the view name to the query that it encapsulates, and uses the result set as the merge source data.
For example, the VMart table public.product_dimension
contains current and discontinued products. You can move all discontinued products into a separate table public.product_dimension_discontinued
, as follows:
=> CREATE TABLE public.product_dimension_discontinued (
product_key int,
product_version int,
sku_number char(32),
category_description char(32),
product_description varchar(128));
=> MERGE INTO product_dimension_discontinued tgt
USING product_dimension src ON tgt.product_key = src.product_key
AND tgt.product_version = src.product_version
WHEN NOT MATCHED AND src.discontinued_flag='1' THEN INSERT VALUES
(src.product_key,
src.product_version,
src.sku_number,
src.category_description,
src.product_description);
OUTPUT
--------
1186
(1 row)
Source table product_dimension
uses two columns, product_key
and product_version
, to identify unique products. The MERGE
statement joins the source and target tables on these columns in order to return single instances of non-matching rows. The WHEN NOT MATCHED
clause includes a filter (src.discontinued_flag='1'
), which reduces the result set to include only discontinued products. The remaining rows are inserted into target table product_dimension_discontinued
.
Merging from a subquery result set
You can merge into a table the result set that is returned by a subquery, as follows:
MERGE INTO target-table USING (subquery) sq-alias join-condition
matching-clause[ matching-clause ]
For example, the VMart table public.product_dimension
is defined as follows (DDL truncated):
CREATE TABLE public.product_dimension
(
product_key int NOT NULL,
product_version int NOT NULL,
product_description varchar(128),
sku_number char(32),
...
)
ALTER TABLE public.product_dimension
ADD CONSTRAINT C_PRIMARY PRIMARY KEY (product_key, product_version) DISABLED;
Columns product_key
and product_version
comprise the table's primary key. You can modify this table so it contains a single column that concatenates the values of these two columns. This column can be used to uniquely identify each product, while also maintaining the original values from product_key
and product_version
.
You populate the new column with a MERGE
statement that queries the other two columns:
=> ALTER TABLE public.product_dimension ADD COLUMN product_ID numeric(8,2);
ALTER TABLE
=> MERGE INTO product_dimension tgt
USING (SELECT (product_key||'.0'||product_version)::numeric(8,2) AS pid, sku_number
FROM product_dimension) src
ON tgt.product_key||'.0'||product_version::numeric=src.pid
WHEN MATCHED THEN UPDATE SET product_ID = src.pid;
OUTPUT
--------
60000
(1 row)
The following query verifies that the new column values correspond to the values in product_key
and product_version
:
=> SELECT product_ID, product_key, product_version, product_description
FROM product_dimension
WHERE category_description = 'Medical'
AND product_description ILIKE '%diabetes%'
AND discontinued_flag = 1 ORDER BY product_ID;
product_ID | product_key | product_version | product_description
------------+-------------+-----------------+-----------------------------------------
5836.02 | 5836 | 2 | Brand #17487 diabetes blood testing kit
14320.02 | 14320 | 2 | Brand #43046 diabetes blood testing kit
18881.01 | 18881 | 1 | Brand #56743 diabetes blood testing kit
(3 rows)