构建随机森林回归模型
此示例使用 "mtcars" 数据集创建随机森林模型来预测 carb 的值(化油器的数量)。
-
使用
RF_REGRESSOR和mtcars训练数据创建随机森林模型myRFRegressorModel。使用GET_MODEL_SUMMARY查看模型的摘要输出:=> SELECT RF_REGRESSOR ('myRFRegressorModel', 'mtcars', 'carb', 'mpg, cyl, hp, drat, wt' USING PARAMETERS ntree=100, sampling_size=0.3); RF_REGRESSOR -------------- Finished (1 row) => SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='myRFRegressorModel'); -------------------------------------------------------------------------------- =========== call_string =========== SELECT rf_regressor('public.myRFRegressorModel', 'mtcars', '"carb"', 'mpg, cyl, hp, drat, wt' USING PARAMETERS exclude_columns='', ntree=100, mtry=1, sampling_size=0.3, max_depth=5, max_breadth=32, min_leaf_size=5, min_info_gain=0, nbins=32);======= details ======= predictor|type ---------+----- mpg |float cyl | int hp | int drat |float wt |float =============== Additional Info =============== Name |Value ------------------+----- tree_count | 100 rejected_row_count| 0 accepted_row_count| 32 (1 row) -
使用
PREDICT_RF_REGRESSOR预测化油器数量:=> SELECT PREDICT_RF_REGRESSOR (mpg,cyl,hp,drat,wt USING PARAMETERS model_name='myRFRegressorModel') FROM mtcars; PREDICT_RF_REGRESSOR ---------------------- 2.94774203574204 2.6954087024087 2.6954087024087 2.89906346431346 2.97688489288489 2.97688489288489 2.7086587024087 2.92078965478965 2.97688489288489 2.7086587024087 2.95621822621823 2.82255155955156 2.7086587024087 2.7086587024087 2.85650394050394 2.85650394050394 2.97688489288489 2.95621822621823 2.6954087024087 2.6954087024087 2.84493251193251 2.97688489288489 2.97688489288489 2.8856467976468 2.6954087024087 2.92078965478965 2.97688489288489 2.97688489288489 2.7934087024087 2.7934087024087 2.7086587024087 2.72469441669442 (32 rows)