回归算法的随机森林创建回归树的集成模型。每棵树都对随机选择的训练数据子集进行训练。该算法预测的值是单个树的平均预测值。
您可以使用下列函数训练随机森林模型,并使用该模型对一组测试数据进行预测:
有关如何在 Vertica 中将随机森林用于回归算法的完整示例,请参阅构建随机森林回归模型。
回归算法的随机森林创建回归树的集成模型。每棵树都对随机选择的训练数据子集进行训练。该算法预测的值是单个树的平均预测值。
您可以使用下列函数训练随机森林模型,并使用该模型对一组测试数据进行预测:
有关如何在 Vertica 中将随机森林用于回归算法的完整示例,请参阅构建随机森林回归模型。
此示例使用 "mtcars" 数据集创建随机森林模型来预测 carb
的值(化油器的数量)。
使用
RF_REGRESSOR
和 mtcars
训练数据创建随机森林模型 myRFRegressorModel
。使用
GET_MODEL_SUMMARY
查看模型的摘要输出:
=> SELECT RF_REGRESSOR ('myRFRegressorModel', 'mtcars', 'carb', 'mpg, cyl, hp, drat, wt' USING PARAMETERS
ntree=100, sampling_size=0.3);
RF_REGRESSOR
--------------
Finished
(1 row)
=> SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='myRFRegressorModel');
--------------------------------------------------------------------------------
===========
call_string
===========
SELECT rf_regressor('public.myRFRegressorModel', 'mtcars', '"carb"', 'mpg, cyl, hp, drat, wt'
USING PARAMETERS exclude_columns='', ntree=100, mtry=1, sampling_size=0.3, max_depth=5, max_breadth=32,
min_leaf_size=5, min_info_gain=0, nbins=32);
=======
details
=======
predictor|type
---------+-----
mpg |float
cyl | int
hp | int
drat |float
wt |float
===============
Additional Info
===============
Name |Value
------------------+-----
tree_count | 100
rejected_row_count| 0
accepted_row_count| 32
(1 row)
使用
PREDICT_RF_REGRESSOR
预测化油器数量:
=> SELECT PREDICT_RF_REGRESSOR (mpg,cyl,hp,drat,wt
USING PARAMETERS model_name='myRFRegressorModel') FROM mtcars;
PREDICT_RF_REGRESSOR
----------------------
2.94774203574204
2.6954087024087
2.6954087024087
2.89906346431346
2.97688489288489
2.97688489288489
2.7086587024087
2.92078965478965
2.97688489288489
2.7086587024087
2.95621822621823
2.82255155955156
2.7086587024087
2.7086587024087
2.85650394050394
2.85650394050394
2.97688489288489
2.95621822621823
2.6954087024087
2.6954087024087
2.84493251193251
2.97688489288489
2.97688489288489
2.8856467976468
2.6954087024087
2.92078965478965
2.97688489288489
2.97688489288489
2.7934087024087
2.7934087024087
2.7086587024087
2.72469441669442
(32 rows)