这是本节的多页打印视图。 点击此处打印.

返回本页常规视图.

用于回归的随机森林

回归算法的随机森林创建回归树的集成模型。每棵树都对随机选择的训练数据子集进行训练。该算法预测的值是单个树的平均预测值。

您可以使用下列函数训练随机森林模型,并使用该模型对一组测试数据进行预测:

有关如何在 Vertica 中将随机森林用于回归算法的完整示例,请参阅构建随机森林回归模型

1 - 构建随机森林回归模型

此示例使用 "mtcars" 数据集创建随机森林模型来预测 carb 的值(化油器的数量)。

开始示例之前,请加载机器学习示例数据
  1. 使用 RF_REGRESSORmtcars 训练数据创建随机森林模型 myRFRegressorModel。使用 GET_MODEL_SUMMARY 查看模型的摘要输出:

    => SELECT RF_REGRESSOR ('myRFRegressorModel', 'mtcars', 'carb', 'mpg, cyl, hp, drat, wt' USING PARAMETERS
    ntree=100, sampling_size=0.3);
    RF_REGRESSOR
    --------------
    Finished
    (1 row)
    
    
    => SELECT GET_MODEL_SUMMARY(USING PARAMETERS model_name='myRFRegressorModel');
    --------------------------------------------------------------------------------
    ===========
    call_string
    ===========
    SELECT rf_regressor('public.myRFRegressorModel', 'mtcars', '"carb"', 'mpg, cyl, hp, drat, wt'
    USING PARAMETERS exclude_columns='', ntree=100, mtry=1, sampling_size=0.3, max_depth=5, max_breadth=32,
    min_leaf_size=5, min_info_gain=0, nbins=32);
    
    
    =======
    details
    =======
    predictor|type
    ---------+-----
    mpg      |float
    cyl      | int
    hp       | int
    drat     |float
    wt       |float
    ===============
    Additional Info
    ===============
    Name              |Value
    ------------------+-----
    tree_count        | 100
    rejected_row_count|  0
    accepted_row_count| 32
    (1 row)
    
  2. 使用 PREDICT_RF_REGRESSOR 预测化油器数量:

    => SELECT PREDICT_RF_REGRESSOR (mpg,cyl,hp,drat,wt
    USING PARAMETERS model_name='myRFRegressorModel') FROM mtcars;
    PREDICT_RF_REGRESSOR
    ----------------------
    2.94774203574204
    2.6954087024087
    2.6954087024087
    2.89906346431346
    2.97688489288489
    2.97688489288489
    2.7086587024087
    2.92078965478965
    2.97688489288489
    2.7086587024087
    2.95621822621823
    2.82255155955156
    2.7086587024087
    2.7086587024087
    2.85650394050394
    2.85650394050394
    2.97688489288489
    2.95621822621823
    2.6954087024087
    2.6954087024087
    2.84493251193251
    2.97688489288489
    2.97688489288489
    2.8856467976468
    2.6954087024087
    2.92078965478965
    2.97688489288489
    2.97688489288489
    2.7934087024087
    2.7934087024087
    2.7086587024087
    2.72469441669442
    (32 rows)