This is the multi-page printable view of this section.
Click here to print.
Return to the regular view of this page.
Flex table data functions
The flex table data helper functions supply information you need to directly query data in flex tables.
The flex table data helper functions supply information you need to directly query data in flex tables. After you compute keys and create views from the raw data, you can use field names directly in queries instead of using map functions to extract data.
In addition to these data meta-functions, there are flex functions that are not meta-functions.
Flex table dependencies
Each flex table has two dependent objects, a keys table and a view. While both objects are dependent on their parent table, you can drop either object independently. Dropping the parent table removes both dependents, without a CASCADE option.
Associating flex tables and views
The helper functions automatically use the dependent table and view if they are internally linked with the parent table. You create both when you create the flex table. You can drop either the keys table or the view and re-create objects of the same name. However, if you do so, the new objects are not internally linked with the parent flex table.
In this case, you can restore the internal links of these objects to the parent table. To do so, drop the keys table and the view before calling the RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW function. Calling this function re-creates the keys table and view.
The remaining helper functions perform the tasks described in this section.
1 - BUILD_FLEXTABLE_VIEW
Creates, or re-creates, a view for a default or user-defined keys table, ignoring any empty keys.
Creates, or re-creates, a view for a default or user-defined keys table, ignoring any empty keys.
Note
If the length of a key exceeds 65,000, Vertica truncates the key.
This is a meta-function. You must call meta-functions in a top-level SELECT statement.
Behavior type
Volatile
Syntax
BUILD_FLEXTABLE_VIEW ('[[database.]schema.]flex-table'
[ [,'view-name'] [,'user-keys-table'] ])
Arguments
[
database
.]
schema
Database and schema. The default schema is public
. If you specify a database, it must be the current database.
flex-table
- The flex table name. By default, this function builds or rebuilds a view for the input table with the current contents of the associated
flex_table_keys
table.
view-name
- A custom view name. Use this option to build a new view for
flex-table
with the name you specify.
user-keys-table
- Name of a keys table from which to create the view. Use this option if you created a custom keys table from the flex table map data, rather than from the default
flex_table_keys
table. The function builds a view from the keys in user_keys
, rather than from flex_table_keys
.
Examples
The following examples show how to call BUILD_FLEXTABLE_VIEW with 1, 2, or 3 arguments.
To create, or re-create, a default view:
-
Call the function with an input flex table:
=> SELECT BUILD_FLEXTABLE_VIEW('darkdata');
build_flextable_view
-----------------------------------------------------
The view public.darkdata_view is ready for querying
(1 row)
The function creates a view with the default name (darkdata_view
) from the darkdata
_keys table.
-
Query a key name from the new or updated view:
=> SELECT "user.id" FROM darkdata_view;
user.id
-----------
340857907
727774963
390498773
288187825
164464905
125434448
601328899
352494946
(12 rows)
To create, or re-create, a view with a custom name:
-
Call the function with two arguments, an input flex table, darkdata
, and the name of the view to create, dd_view
:
=> SELECT BUILD_FLEXTABLE_VIEW('darkdata', 'dd_view');
build_flextable_view
-----------------------------------------------
The view public.dd_view is ready for querying
(1 row)
-
Query a key name (user.lang
) from the new or updated view (dd_view
):
=> SELECT "user.lang" FROM dd_view;
user.lang
-----------
tr
en
es
en
en
it
es
en
(12 rows)
To create a view from a custom keys table with BUILD_FLEXTABLE_VIEW, the custom table must have the same schema and table definition as the default table (darkdata_keys
). Create a custom keys table, using any of these three approaches:
-
Create a columnar table with all keys from the default keys table for a flex table (darkdata_keys
):
=> CREATE TABLE new_darkdata_keys AS SELECT * FROMdarkdata_keys;
CREATE TABLE
-
Create a columnar table without content (LIMIT 0
) from the default keys table for a flex table (darkdata_keys
):
=> CREATE TABLE new_darkdata_keys AS SELECT * FROM darkdata_keys LIMIT 0;
CREATE TABLE
kdb=> SELECT * FROM new_darkdata_keys;
key_name | frequency | data_type_guess
----------+-----------+-----------------
(0 rows)
-
Create a columnar table without content (LIMIT 0
) from the default keys table, and insert two values ('user.lang
', 'user.name
') into the key_name
column:
=> CREATE TABLE dd_keys AS SELECT * FROM darkdata_keys limit 0;
CREATE TABLE
=> INSERT INTO dd_keys (key_name) values ('user.lang');
OUTPUT
--------
1
(1 row)
=> INSERT INTO dd_keys (key_name) values ('user.name');
OUTPUT
--------
1
(1 row)
=> SELECT * FROM dd_keys;
key_name | frequency | data_type_guess
-----------+-----------+-----------------
user.lang | |
user.name | |
(2 rows)
After creating a custom keys table, call BUILD_FLEXTABLE_VIEW with all arguments (an input flex table, the new view name, the custom keys table):
=> SELECT BUILD_FLEXTABLE_VIEW('darkdata', 'dd_view', 'dd_keys');
build_flextable_view
-----------------------------------------------
The view public.dd_view is ready for querying
(1 row)
Query the new view:
=> SELECT * FROM dd_view;
See also
2 - COMPUTE_FLEXTABLE_KEYS
Computes the virtual columns (keys and values) from the flex table VMap data.
Computes the virtual columns (keys and values) from the flex table VMap data. Use this function to compute keys without creating an associated table view. To also build a view, use COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW.
Note
If the length of a key exceeds 65,000, Vertica truncates the key.
The function stores its results in the associated flex keys table (flexTableName
_keys
), which has the following columns:
-
key_name
-
frequency
-
data_type_guess
For more information, see Computing flex table keys.
This is a meta-function. You must call meta-functions in a top-level SELECT statement.
Behavior type
Volatile
Syntax
COMPUTE_FLEXTABLE_KEYS ('[[database.]schema.]flex-table')
Arguments
[
database
.]
schema
Database and schema. The default schema is public
. If you specify a database, it must be the current database.
*
flex-table*
- Name of a flex table.
Using data type guessing
The results in the data_type_guess
column depend on the EnableBetterFlexTypeGuessing
configuration parameter. By default, the parameter is 1 (ON). This setting results in the function returning all non-string keys in the data_type_guess
column as one of the following types (and others listed in Data types):
-
BOOLEAN
-
INTEGER
-
FLOAT
-
TIMESTAMP
-
DATE
Setting the configuration parameter to 0 (OFF) results in the function returning only string types ([LONG]VARCHAR) or ([LONG] VARBINARY) for all values in the data_type_guess
column of the keys table .
Assigning flex key data types
Use the sample CSV data in this section to compare the results of using or not using the EnableBetterFlexTypeGuessing
configuration parameter. When the parameter is ON, the function determines key non-string data types in your map data more accurately. The default for the parameter is 1 (ON).
Year,Quarter,Region,Species,Grade,Pond Value,Number of Quotes,Available
2015,1,2 - Northwest Oregon & Willamette,Douglas-fir,1P,$615.12 ,12,No
2015,1,2 - Northwest Oregon & Willamette,Douglas-fir,SM,$610.78 ,12,Yes
2015,1,2 - Northwest Oregon & Willamette,Douglas-fir,2S,$596.00 ,20,Yes
2015,1,2 - Northwest Oregon & Willamette,Hemlock,P,$520.00 ,6,Yes
2015,1,2 - Northwest Oregon & Willamette,Hemlock,SM,$510.00 ,6,No
2015,1,2 - Northwest Oregon & Willamette,Hemlock,2S,$490.00 ,14,No
To compare the data type assignment results, complete the following steps:
-
Save the CSV data file (here, as trees.csv
).
-
Create a flex table (trees
) and load trees.csv
using the fcsvparser
:
=> CREATE FLEX TABLE trees();
=> COPY trees FROM '/home/dbadmin/tempdat/trees.csv' PARSER fcsvparser();
-
Use COMPUTE_FLEXTABLE_KEYS
with the trees
flex table.
=> SELECT COMPUTE_FLEXTABLE_KEYS('trees');
COMPUTE_FLEXTABLE_KEYS
-----------------------------------------------
Please see public.trees_keys for updated keys
(1 row)
-
Query the trees_keys
table output.:
=> SELECT * FROM trees_keys;
key_name | frequency | data_type_guess
------------------+-----------+-----------------
Year | 6 | Integer
Quarter | 6 | Integer
Region | 6 | Varchar(66)
Available | 6 | Boolean
Number of Quotes | 6 | Integer
Grade | 6 | Varchar(20)
Species | 6 | Varchar(22)
Pond Value | 6 | Numeric(8,3)
(8 rows)
-
Set the EnableBetterFlexTypeGuessing
parameter to 0 (OFF).
-
Call COMPUTE_FLEXTABLE_KEYS
with the trees
flex table again.
-
Query the trees_keys
table to compare the data_type_guess
values with the previous results. Without the configuration parameter set, all of the non-string data types are VARCHARS of various lengths:
=> SELECT * FROM trees_keys;
key_name | frequency | data_type_guess
------------------+-----------+-----------------
Year | 6 | varchar(20)
Quarter | 6 | varchar(20)
Region | 6 | varchar(66)
Available | 6 | varchar(20)
Grade | 6 | varchar(20)
Number of Quotes | 6 | varchar(20)
Pond Value | 6 | varchar(20)
Species | 6 | varchar(22)
(8 rows)
-
To maintain accurate results for non-string data types, set the EnableBetterFlexTypeGuessing
parameter back to 1 (ON).
For more information about the EnableBetterFlexTypeGuessing
configuration parameter, see EnableBetterFlexTypeGuessing.
See also
3 - COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW
Combines the functionality of BUILD_FLEXTABLE_VIEW and COMPUTE_FLEXTABLE_KEYS to compute virtual columns (keys) from the VMap data of a flex table and construct a view.
Combines the functionality of BUILD_FLEXTABLE_VIEW and COMPUTE_FLEXTABLE_KEYS to compute virtual columns (keys) from the VMap data of a flex table and construct a view. Creating a view with this function ignores empty keys. If you do not need to perform both operations together, use one of the single-operation functions instead.
Note
If the length of a key exceeds 65,000, Vertica truncates the key.
This is a meta-function. You must call meta-functions in a top-level SELECT statement.
Behavior type
Volatile
Syntax
COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW ('flex-table')
Arguments
flex-table
- Name of a flex table
Examples
This example shows how to call the function for the darkdata flex table.
=> SELECT COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW('darkdata');
compute_flextable_keys_and_build_view
-----------------------------------------------------------------------
Please see public.darkdata_keys for updated keys
The view public.darkdata_view is ready for querying
(1 row)
See also
4 - MATERIALIZE_FLEXTABLE_COLUMNS
Materializes virtual columns listed as key_names in the flextable_keys table you compute using either COMPUTE_FLEXTABLE_KEYS or COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW.
Materializes virtual columns listed as key_names
in the flextable_keys
table you compute using either COMPUTE_FLEXTABLE_KEYS or COMPUTE_FLEXTABLE_KEYS_AND_BUILD_VIEW.
Note
Each column that you materialize with this function counts against the data storage limit of your license. To check your Vertica license compliance, call the AUDIT()
or AUDIT_FLEX()
functions.
This is a meta-function. You must call meta-functions in a top-level SELECT statement.
Behavior type
Volatile
Syntax
MATERIALIZE_FLEXTABLE_COLUMNS ('[[database.]schema.]flex-table' [, n-columns [, keys-table-name] ])
Arguments
[
database
.]
schema
Database and schema. The default schema is public
. If you specify a database, it must be the current database.
flex-table
- The name of the flex table with columns to materialize. The function:
n-columns
- The number of columns to materialize, up to 9800. The function attempts to materialize the number of columns from the keys table, skipping any columns already materialized. It orders the materialized results by frequency, descending. If not specified, the default is a maximum of 50 columns.
keys-table-name
- The name of a keys from which to materialize columns. The function:
-
Materializes n-columns
columns from the keys table
-
Skips any columns already materialized
-
Orders the materialized results by frequency, descending
Examples
The following example shows how to call MATERIALIZE_FLEXTABLE_COLUMNS to materialize columns. First, load a sample file of tweets (tweets_10000.json
) into the flex table twitter_r
. After loading data and computing keys for the sample flex table, call MATERIALIZE_FLEXTABLE_COLUMNS to materialize the first four columns:
=> COPY twitter_r FROM '/home/release/KData/tweets_10000.json' parser fjsonparser();
Rows Loaded
-------------
10000
(1 row)
=> SELECT compute_flextable_keys ('twitter_r');
compute_flextable_keys
---------------------------------------------------
Please see public.twitter_r_keys for updated keys
(1 row)
=> SELECT MATERIALIZE_FLEXTABLE_COLUMNS('twitter_r', 4);
MATERIALIZE_FLEXTABLE_COLUMNS
-------------------------------------------------------------------------------
The following columns were added to the table public.twitter_r:
contributors
entities.hashtags
entities.urls
For more details, run the following query:
SELECT * FROM v_catalog.materialize_flextable_columns_results WHERE table_schema = 'public' and table_name = 'twitter_r';
(1 row)
The last message in the example recommends querying the MATERIALIZE_FLEXTABLE_COLUMNS_RESULTS system table for the results of materializing the columns, as shown:
=> SELECT * FROM v_catalog.materialize_flextable_columns_results WHERE table_schema = 'public' and table_name = 'twitter_r';
table_id | table_schema | table_name | creation_time | key_name | status | message
-------------------+--------------+------------+------------------------------+-------------------+--------+---------------------
45035996273733172 | public | twitter_r | 2013-11-20 17:00:27.945484-05| contributors | ADDED | Added successfully
45035996273733172 | public | twitter_r | 2013-11-20 17:00:27.94551-05 | entities.hashtags | ADDED | Added successfully
45035996273733172 | public | twitter_r | 2013-11-20 17:00:27.945519-05| entities.urls | ADDED | Added successfully
45035996273733172 | public | twitter_r | 2013-11-20 17:00:27.945532-05| created_at | EXISTS | Column of same name already
(4 rows)
See also
5 - RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW
Restores the keys table and the view.
Restores the keys table and the view. The function also links the keys table with its associated flex table, in cases where either table is dropped. The function also indicates whether it restored one or both objects.
This is a meta-function. You must call meta-functions in a top-level SELECT statement.
Behavior type
Volatile
Syntax
RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW ('flex-table')
Arguments
flex-table
- Name of a flex table
Examples
This example shows how to invoke this function with an existing flex table, restoring both the keys table and view:
=> SELECT RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW('darkdata');
RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW
----------------------------------------------------------------------------------
The keys table public.darkdata_keys was restored successfully.
The view public.darkdata_view was restored successfully.
(1 row)
This example illustrates that the function restored darkdata_view
, but that darkdata_keys
did not need restoring:
=> SELECT RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW('darkdata');
RESTORE_FLEXTABLE_DEFAULT_KEYS_TABLE_AND_VIEW
------------------------------------------------------------------------------------
The keys table public.darkdata_keys already exists and is linked to darkdata.
The view public.darkdata_view was restored successfully.
(1 row)
After restoring the keys table, there is no content. To populate the flex keys, call the COMPUTE_FLEXTABLE_KEYS function.
=> SELECT * FROM darkdata_keys;
key_name | frequency | data_type_guess
----------+-----------+-----------------
(0 rows)
See also