Time series models are trained on stationary time series (that is, time series where the mean doesn't change over time) of stochastic processes with consistent time steps. These algorithms forecast future values by taking into account the influence of values at some number of preceding timesteps (lags).
Examples of applicable datasets include those for temperature, stock prices, earthquakes, product sales, etc.
To normalize datasets with inconsistent timesteps, see Gap filling and interpolation (GFI).